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TD 8835

COMPARISONS OF BACKSCATrERING FROM CYLINDRICAL SHELLS

DESCRIBED BY THIN SHELL AND ELASTICITY THEORIES

INTRODUCTION

The ability of thin shell theory to predict plane wave scattering from cylindrical

shells has been recently discussed by Veksler and Korsunskii [J. Acoust. Soc. Am., 87,

pp. 943-962 (1990)] for an iron shell. Both the plate wave speed and the modified shear

wave speed of iron are greater than the wave speed of water. For a shell with an h/a of

1/64, where h is the wall thickness and a is the radius, the symmetric Lamb-type waves

corresponding to extensional structural modes were closely predicted by Love-Timoshenko

thin shell theory, but antisymmetric Lamb-type waves were not well predicted. In

contrast, S. Baskar, V. V. Varadan, and V. K. Varadan [.. Acoust. Soc. Am., 75,

pp. 1673-1679 (1984)] concluded that thin shell theory adequately predicted back-
scattering in the range of excitation of antisymmetric Lamb-type waves for aluminum

shells of h/a values of 0.15 for ka values up to 10.

For thin shell theory, zeroth order antisymmetric waves are predicted near the kh

values of the coincidence frequency for the material. For materials where both the plate

and shear wave speeds are greater than the sound speed in fluid, the deficiencies of thin

shell theory in describing backscattering near the zeroth order antisymmetric Lamb wave

response can be explained by analogies to plate theory. For materials with plate wave

speeds greater than the wave speed in the fluid and with modified shear wave speeds less

than the fluid wave speed, no zeroth order antisymmetric Lamb-type wave is predicted by

either elasticity theory or thick shell theory. Accordingly, fcr this class of materials, thin

shell theory predicts an antisymmetric Lamb-type wave that is of the wrong order.
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~SCATTERING FROM AN INFINITE SHELL

Pinc

Pt = Pinc + Ps

Ps

FIGURE 1

A plane wave is shown normally incident to an infinitely long cylindrical shell of
wall thickness h and outer radius a. The total pressure Pt is given by the sum of the
incident pressure Pinc and the scattered pressure ps. The shell will be described by both
elasticity theory and Love-Timoshenko thin shell theory. For elasticity theory, six

boundary conditions must be satisfied, whereas for thin shell theory only three conditions

need to be satisfied.
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SCATTERING FROM AN ELASTICK CYLINDRICAL SHELL
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FIGURE 2

In the formulation of scattering by elasticity theory, the incident and scattered

pressures are expressed in cylindrical harmonics [J. J. Faran, J. Acoust. Soc. Am., 23,

pp. 405-418 (1951)]. Both shear and dilatational waves describe the motion within the

shell. Three boundary conditions must be satisfied at both the inner and outer radii. The

boundary conditions are as follows: (1) the normal stress in the shell equals the negative of

the total pressure in the fluid, (2) the normal velocity in the shell is proportional to the

normal derivative of the total pressure, and (3) the tangential stress is zero on the

boundary of the cylinder.

The function Qn defines the shell elasticity. Here ps is the density of the shell and p

is the density of the fluid. Qn also is shown to be related to the modal impedance Z n

where Z n=(Pt)n /W n , with Wn being the normal modal velocity of the elastic shell. With

this definition, the scattered pressure Ps can be written by an expression that is consistent

with shell theory, as shown in the next figure. Resonance scattering occurs in the

scattered pressure ps at ka values where the determinant in the denominator of the

expression for Qn is zero or, equivalently, where the modal impedance Zn is zero. The

backscattered pressure will be expressed in terms of the farfield form function f.
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LOVE - TIMOSHENKO THIN
SHELL EOUATIONS
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FIGURE 3

The normal and tangential stress equations that describe Love-Timoshenko thin shell

theory include (1) an inertial term, (2) a term that describes extensional motion, and (3) a

term that describes inextensional motion. The first equation represents the normal stress

at the midsurface of the shell, which is equal to the negative of the total pressure in the

fluid. The second equation represents the tangential stress, which is zero at the fluid

interface. W and V, the normal and tangential displacements, respectively, are expanded

in terms of the circular functions. When V is eliminated from the stress equations, the

total pressure can be written in terms of a sum of modal impedances Z times the normaln

modal velocities (-iw W n). The additional boundary condition is that the normal velocity
at the midsurface of the shell is proportional to the normal derivative of the total

pressw e. The scattered pressure ps can then be written in terms of the modal impedance

Z . In the expression for the modal impedance, E is Young's modulus and V is Poisson'sn
ratio. For a cylindrical shell, the Love-Timoshenko equations are equivalent to those

developed by Junger ["Sound Scattering by Thin Elastic Shells," J. Acoust. Soc. Am., 24,

pp. 365-373 (1952)].
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FIGURE 4

The resonance frequencies calculated from the shell theory shown here as a function

of circumferential mode number are from Junger and Feit [Sound, Structures, and Their

Interaction, MIT Press, Cambridge, MA (1986)]. The discrete modes are shown as

continuous functions. The term c along the ordinate axis is the plate velocity of the

shell material. Note that there are two solutions to the eigenfrequency equation for the

resonance frequencies of the shell. The nextensional modes, which start at lower

frequencies, depend on the shell thickness. The extensional modes are essentially

independent of wall thickness.
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ARMCO IRON SHELL
(Veksler & Korsunskii) h=a/64
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FIGURE 5

A comparison of the backscattered form function from a shell with h/a of 1/64 as

calculated by thin shell theory and full elasticity theory is shown from the paper by

Veksler and Korsunskii. Below a ka value of 30, no differences are seen in the two

theori-s. At low ka, the fo-m function is described by the interaction of the specular

reflection, which experiences a 1800 phase change at the acoustical soft cylinder, with the
extensional modes or symmetric Lamb-type waves that circumnavigate the cylinder. The

destructive interference of the out-of-phase waves results in nulls in the form function.

With increased ka, the cylinder begins to look more rigid to the incident wave; thus, the

specular and the creeping waves begin to combine constructively to form narrow peaks in

the form function.

Above a ka value of 30, elasticity theory predicts additional structure, which is not

seen in Veksler's calculation for a thin shell. Redoing Veksler's thin shell theory

calculations with increased ka resolution results in narrow bandwidth bending resonances,

which fall between the extensional modes. For materials in which both the plate and
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shear wave speeds are greater than for the fluid, Dragonette [NRL Report No. 8216,
Naval Research Laboratory (1978)] has indicated a correspondence of excitation of
flexural Lamb waves with the coincidence frequency for plates. At the coincidence
frequency, the wave speed in the shell equals the wave speed in the fluid. Above a ka
value of 60, which corresponds to the coincidence frequency for a flat plate of the saii,e
thickness as the shell, poor agreement is seen in the two solutions for the predictions of
the antisymmetric Lamb-type waves. Veksler and Korsunskii concluded that the
antisymmetric waves are not well predicted by Love-Timoshenko thin shell theory. The
basis of this poor agreement will be discussed later.
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BACKSCATTERING FROM STEEL

SHELLS OF VARIOUS THICKNESS
(ELASTICITY THEORY)

1.5

1 0

05

00* T

1 0

0.5

I I I
0.0 50 100 150 20.0

ka

FIGURE 6

The backscattered form function as calculated from elasticity theory is shown as a

function of ka for steel shells of increasing shell thickness. For a shell of wall thickness

to radius ratio (h/a) of 1/100, the form function is described by the interaction of the

specular reflection with the symmetric extensional modes. For h/a of 1/20 shell, the

antisymmetric Lamb-type flexural wave appears above a ka of 15. The slower phase

velocity of this wave causes more rapid fluctuations in the form function. Between a ka

of S to 15, the narrow peaks are due to the inextensional bending modes. For h/a of 1/10.

the antisymmetric flexural waves and the symmetric bending waves interact with the

extensional resonances at even lower values of ka.
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OBACKSCATTERING FROM A STEEL SHELL
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FIGURE 7

A comparison of elasticity theory with Love-Tin-.oshenko thin shell theory for a

steel shell of h/a value of 1/19 is plotted for ka values along the abscissa and kh along the

top of the graph. In this example, the three different modes discussed in the previous

figure can be separately identified. The first three in-air extensional mode numbers are

designated on the abscissa by N. At ka values below 10, good agreement is found between

the two theories. Narrow resonances due to bending modes designated by n' begin to

appear at a modal number of six. At low values of ka, the wavelength of the incident

wave is too large to distinguish these non-net volume velocity bending modes.

Differences between the shell theory and elasticity theory in prediction of the narrow

bending modes are due to the higher ka resolution of the shell theory calculations. The

asymmetric Lamb-type waves due to flexure are predicted by thin shell theory above a ka

of 12, but the agreement with full elasticity theory is poor. Note that coincidence

frequency for a plate of the same thickness as the shell is predicted at a ka value of about

18. Plate theory results will now be used to investigate the shortcomings of thin shell

theory.
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PLATE THEORIES
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FIGURE 8

The coincidence frequency for classical thin plate theory only depends on (1) the

plate velocity Cp, (2) the wave speed in the fluid that is designated by c, and (3) the plate

thickness. The coincidence frequency for thick plate theory is a function of both the

plate velocity and the modified shear velocity c . If cs<c<c or c p<c<c s , no coincidence

frequency is predicted. Also for cscp>c, two coincident angles are preilicted by thick

plate theory. Mindlin rJ. Applied Mechanics, 18, pp. 31-38 (1951)] has shown that to a

first approximation the validity of thin plate theory is dependent on the ratios of the

modified shear and plate velocities to that of the fluid wave speed. As the values of the

modified shear and plate velocities decrease, thin shell theory is expected to be a poorer

approximation to the generation of antisymmetric Lamb-type flexural waves.

10



TD 8835

2500- STEEL PLATE

1500-2000-

u~

U
0
, 1000-
w

500-

4UI II I I

0 2

kh

FIGURE 9

A plot of the phase velocity of a steel plate as a function of kh indicates that for
classical plate theory the coincidence frequency is predicted to occur at a lower value of

kh than for the positive branch of the Timoshenko-Mindlin thick plate theory. Thu,

classical plate theory will yield errors in the prediction of the antisymmetric Lamb-type

flexural waves at lower values of ka than will the Timoshenko-Mindlin plate theory. This

will be true for all materials in which both the modified shear wave speed and the plate

wave speed are greater than the wave speed in the fluid.
0 112
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FIGURE 10

The coincidence angle is shown as a function of kh for classical plate theory and

Timoshenko-Mindlin thick plate theory. The coincidence angle is defined as a grazing

angle with respect to the plate. Corresponding to the phase velocity predictions, the

classical coincidence angle is typically greater than is the angle for the positive branch of

thick plate theory and begins at a lower value of kh. Note that the second coincidence

angle for the negative branch of the thick plate theory is predicted at higher values of kh

and begins at normal incidence, or 900. with respect to the plate.
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BACKSCATTERING FROM LEXAN
PLASTIC SHELLS OF VARIOUS
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FIGURE 11

The backscattered form function as calculated by elasticity theory is shown as a

function of ka for plastic shells of increasing shell thickness. The low ka behavior of the

plastic shell is different from the iron and steel shells because of the much lower plate

and modified shear velocities of plastic. The first peak in all three curves is due to the

N=O extensional mode of the shell. For the plastic material with a smaller impedance

mismatch with respect to the fluid, there is no evidence of additional narrow resonances

due to symmetric bending modes. Again, as the thickness of the shell increases, the

antisymrnetric Lamb-type waves appear at lower values of ka. It will now be shown that

the generation of the antisymmetric Lamb-type flexural waves has a different character

than was seen for the steel shell.
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BACKSCATTERING FROM A PLASTIC SHELL
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FIGURE 12

A comparison between shell theory and elasticity theory is shown for a plastic shell

with an h/a value of 1/15. Both ka and kh horizontal axes are shown. The ka values for

the first 10 in-air extensional modes are shown along the lower abscissa. The plastic has

a plate wave speed greater than water but a modified shear wave speed less than the wave

speed for the fluid. The first resonance can be predicted by accounting for the fluid

loading on the N=O extensional mode. For ka values less than 12, the form function

predicted by thin shell theory compares well with that predicted by elasticity theory.

Above a ka of 12, elasticity theory predicts an antisymmetric Lamb-type flexural wave,

but the thin shell theory continues to only predict the narrow symmetric extensional

Lamb-type wave. Note that the maximum value of kh on this plot is about 1.5.
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FIGURE 13

The phase velocity for a plastic plate is plotted versus kh. The coincidence angle

predicted by classical plate theory is above a kh value of 3. No coincidence frequency is

predicted for the phase velocity of the positive branch of the Timoshenko-Mindlin theory,

which asymptotes at the modified shear wave speed c s . The second flexural branch has a

phase velocity that is greater than wave speed for the fluid.
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FIGURE 14

The predicted coincidence angles for a plastic plate are plotted as a function of kh

for both classical and thick plate theory. Below a kh value of 2. the second branch of the

thick plate theory predicts a coincidence angle near 900 (normal to the plate). Classical

plate theory does not predict a coincidence angle until just above a kh value of 3, where

coincidence is predicted to occur at the grazing angle of zero degrees. The

antisymmetric Lamb-type wave predicted by shell elasticity theory in figure 12 is due to

the second antisymmetric flexural Lamb-type wave. Thin shell theory fails to predict this

type of flexural wave.
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FIGURE 15

For a material such as lead for which both the modified shear velocity and the plate
velocity are less than water, the classical coincidence frequency for the negative branch
is close to that predicted by the classical plate theory. Note that the asymptotic behavior
of the negative branch approaches cp , which is less than the wave speed in water.
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FIGURE 16

The coincidence angles predicted for lead by thick plate theory are associated with

the second branch and begin at 900 (normal to the plate). As with the plastic plate, the

coincidence effect begins at kh values much lower than that associated with the

coincidence frequency. Thus, the antisynmetric Lamb-type waves predicted by thick

plate theory and elastic shell theory would be much lower than those predicted by

classical thin shell theory.
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CONCLUSIONS

At low values of kh, the interaction of the specular-reflected waves and the

extensional modes described by thin shell theory agrees well with the scattering from

shells predicted by full elasticity theory. Because the inextensional symmetric modes

have no net volume velocity for a circular cylindrical shell, they contribute as narrow

resonances at intermediate values of kh where the bending motion can be distinguished at

the smaller wavelengths.

The analysis confirms that the validity of thin shell theory predictions for the

antisymxnetric flexural resonances is directly proportional to the ratio of the modified

shear wave speed and the ratio of plate wave speed to that of the wave speed of the

fluid. For materials where either or both the plate and shear wave speeds are less than

that for fluid, the generation of the second order antisymmetric wave has no

correspondence to the classical coincidence frequency. In general, to accurately predict

backscattering by the lower order antisymmetric Lamb-type flexural waves predicted by

full elasticity theory, a thick shell theory must be employed.

CONCLUSIONS

" HIN SHELL THEORY ACCURATELY PREDICTS SPECULAR/
SYMMETRIC LAMB-TYPE WAVE INTERACTION

* ACCURACY OF THIN SHELL THEORY PREDICTION OF
ANTISYMMETRIC LAMB-TYPE WAVES IS MATERIAL DEPENDENT

" FOR Cp, Cs > c, ANTISYMMETRIC WAVES FOR THIN SHELL
THEORY PREDICTED AT LOWER ka THAN ELASTICITY THEORY
OR THICK SHELL THEORY

* FOR Cp > c > c s ANTISYMMETRIC WAVES FOR THIN SHELL
THEORY PREDICTED AT HIGHER ka THAN ELASTICITY THEORY

" FOR c > Cp, c s ANTISYMMETRIC WAVES FOR THIN SHELL
THEORY PREDIC) ED AT MUCH HIGHER ka THAN ELASTICITY
THEORY

* THICK SHELL THEORY NEEDED TO ACCURATELY PREDICT
ANTISYMMETRIC LAMB-TYPE WAVE SCATTERING

FIGURE 17
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